Alice and Bob each have a certain amount of money. If Alice receives n dollars from Bob, then she will have 4 times as much money as Bob. If, on the other hand, she gives n dollars to Bob, then she will have 3 times as much money as Bob. If neither gives the other any money, what is the ratio of the amount of money Alice has to the amount Bob has?

Relax

Respuesta :

Answer:

[tex]A:B=-8n:-27n\\\\=8:27[/tex]

Step-by-step explanation:

Let the A be the amount Alice initially has and B be Bob's initial amount.

#Alice receives $n from Bob:

[tex]4(A+n)=B-n\ \ \ \ \ \ \ \ \ i[/tex]

#Alice gives n to Bob:

[tex]3(A-n)=B+n\ \ \ \ \ \ \ \ \ \ ii[/tex]

#We simultaneously solve the two expressions:

[tex]4(A+n)=B-n\\\\3(A-n)=B+n\\\\=>from \ i\\4A+4n+n=B\\\\4A+5n=B\\\\\# substitute \ in \ ii\\\\3A-3n=4A+5n+n\\\\A=-8n\\\\B=4A+5n=4(-8n)+5n=-27n[/tex]

The initial amounts of Alice is -8n and Bob's is -27n

#We find the ratio of Alice:Bob:-

[tex]A:B=-8n:-27n\\\\=8:27[/tex]

Hence the ration of Alice to Bob is 8:27

Otras preguntas