
Respuesta :
Answer:
[tex] {1024t}^{5} - 3840{t}^{4} + 5760{t}^{3} - 4320{t}^{2} + 1620t- 243[/tex]
Step-by-step explanation:
Question:-
- To find the Binomial theorem form of [tex]\bold{(4t-3)^{5}}[/tex]
As we know:-
As in Binomial theorem :-
- [tex] {(x - y)}^{5} = {x}^{5} - 5 {x}^{4} y + 10 {x}^{3} {y}^{2} - 10 {x}^{2} {y}^{3} + 5x {y}^{4} - {y}^{5} [/tex]
Solution :-
[tex] = {(4t - 3)}^{5} [/tex]
- Hence, on using the Binomial theorem,
[tex]= {(4t)}^{5} - 5 {(4t)}^{4} (3)+ 10 {(4t)}^{3} {(3)}^{2} - 10 {(4t)}^{2} {(3)}^{3} + 5(4t) {(3)}^{4} - {(3)}^{5} [/tex]
- On formatting
[tex]= {1024t}^{5} - 5 ({256t}^{4} )(3)+ 10 ({64t}^{3} ) (9 ) - 10 ({16t}^{2} )(27) + 5(4t) (81) - 243[/tex]
- On further formatting.
[tex]= {1024t}^{5} - 3840{t}^{4} + 5760{t}^{3} - 4320{t}^{2} + 1620t- 243[/tex]
Hence, the required answer is :-
[tex]{1024t}^{5} - 3840{t}^{4} + 5760{t}^{3} - 4320{t}^{2} + 1620t- 243[/tex]