
Given:
The equation is given as,
[tex]y=3x+1[/tex]The interval is given as,
[tex]\lbrack a,b\rbrack=\lbrack45,48\rbrack[/tex]The objective is to find the average rate of change.
Explanation:
The general formula to find the average rate of change is,
[tex]A=\frac{f(b)-f(a)}{b-a}\text{ . . . . (1)}[/tex]On plugging the function in the equation (1),
[tex]A=\frac{(3(48)+1)-(3(45)+1)}{48-45}[/tex]On further solving the above equation,
[tex]\begin{gathered} A=\frac{145-136}{3} \\ =\frac{9}{3} \\ =3 \end{gathered}[/tex]Hence, the average rate of change is 3.