Relax

Respuesta :

Solution:

Given;

Where;

[tex]m\angle5=149^o[/tex]

Thus;

[tex]\begin{gathered} m\angle1+m\angle5=180^o...........\text{ Sum of angles on a straight line} \\ \\ m\angle1=180^o-149^o \\ \\ m\angle1=31^o \end{gathered}[/tex]

Also;

[tex]\begin{gathered} m\angle2=m\angle5................\text{ Vertically opposite angles are equal} \\ \\ m\angle2=149^o \end{gathered}[/tex][tex]\begin{gathered} m\angle1=m\angle3.............\text{ Corresponding angles are equal} \\ \\ m\angle3=31^o \end{gathered}[/tex][tex]\begin{gathered} m\angle2=m\angle4.....................\text{ Corresponding angles are equal} \\ \\ m\angle4=149^o \end{gathered}[/tex][tex]\begin{gathered} m\angle6=m\angle1.............\text{ Vertically opposite angles are equal} \\ \\ m\angle6=31^o \end{gathered}[/tex][tex]\begin{gathered} m\angle7=m\angle4..................\text{ Vertically opposite angles are equal} \\ \\ m\angle7=149^o \end{gathered}[/tex]

Lastly;

[tex]\begin{gathered} m\angle8=m\angle6................\text{ Corresponding angles are equal} \\ \\ m\angle8=31^o \end{gathered}[/tex]

Ver imagen ZamireE776728